Biological Nitrogen Removal under Low Temperature in a Membrane Separation Bioreactor

Author:

Chiemchaisri C.,Yamamoto K.

Abstract

Biological nitrogen removal under low temperature in a membrane separation bioreactor for on-site domestic wastewater treatment was studied. The bioreactor was operated under intermittent aeration of a 180-minute operational cycle to achieve simultaneous nitrification and denitrification for nitrogen removal. During stepwise temperature decrease from 25°C to 5°C at every two weeks duration, nitrogen removal started to deteriorate as temperature dropped to 10°C. It decreased from more than 90% at 25°C to 20% at 5°C as a result of inhibition of nitrification at low temperature. However, increasing oxygen supply, i.e. increasing aeration time in operational cycle, could completely recover nitrification at 10°C. Nitrogen removal could be achieved by introducing non-aeration period after complete nitrification was obtained. Average nitrogen removal was 90 and 85% under 10 and 5°C respectively. The results indicated that sufficient oxygen transfer could be maintained in the membrane separation bioreactor even if the temperature was as low as 5°C. Analysis of respiratory quinone component of sludge suggested the decrease of strict aerobic bacteria percentage in mixed liquor during temperature decrease and increase of their percentage during the recovery of nitrification at 10°C. These changes could be related to the nitrification through the changes of oxygen transfer condition in the system. Insignificant difference of maximum volumetric nitrification rate obtained at 25 and 5°C probably suggests that there was not much difference in oxygen availability for nitrifying bacteria between both the temperatures once high and stable nitrogen removal was achieved.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3