Inactivation of Ascaris eggs in water using sequential solar driven photo-Fenton and free chlorine

Author:

Bandala Erick R.1,González Liliana1,Sanchez-Salas Jose Luis1,Castillo Jordana H.1

Affiliation:

1. Grupo de Investigación en Energía y Ambiente, Universidad de Las Américas Puebla, Ex–Hacienda de Sta. Catarina Mártir, Cholula, 72820 Puebla, Mexico

Abstract

Sequential helminth egg inactivation using a solar driven advanced oxidation process (AOP) followed by chlorine was achieved. The photo-assisted Fenton process was tested alone under different H2O2 and/or Fe(II) concentrations to assess its ability to inactivate Ascaris suum eggs. The effect of free chlorine alone was also tested. The lowest egg inactivation results were found using Fe(II) or H2O2 separately (5 and 140 mmol L−1, respectively) in dark conditions, which showed about 28% inactivation of helminth eggs. By combining Fe(II) and H2O2 at the same concentrations described earlier, 55% of helminth egg inactivation was achieved. By increasing the reagent's concentration two-fold, 83% egg inactivation was achieved after 120 min of reaction time. Process efficiency was enhanced by solar excitation. Using solar disinfection only, the A. suum eggs inactivation reached was the lowest observed (58% egg inactivation after 120 min (120 kJ L−1)), compared with tests using the photo-Fenton process. The use of the photo-Fenton reaction enhanced the process up to over 99% of egg inactivation after 120 kJ L−1 when the highest Fe(II) and H2O2 concentration was tested. Practically no effect on the helminth eggs was observed with free chlorine alone after 550 mg min L−1 was used. Egg inactivation in the range of 25–30% was obtained for sequential processes (AOP then chlorine) using about 150 mg min L−1.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3