Relationship between solar activity and flood/drought disasters of the Second Songhua river basin

Author:

Hong-yan Li1,Li-jun Xue1,Xiao-jun Wang2

Affiliation:

1. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China

2. Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China and Research Center for Climate Change, Ministry of Water Resources, Nanjing, 210029, China

Abstract

Based on the direct correlation method, this paper analyzes the correlation of sunspot number (SSN) and western Pacific subtropical high (WPSH) ridge index with flood/drought disasters in the Second Songhua River (SSHR) basin, combined with long sequences of SSN, WPSH ridge index, precipitation and other data. Results show that SSN is clearly correlated with flood/drought disasters, what is more, flood years mainly appear in three phases: Solar Maximum Year, years after Solar Maximum Year and Solar Minimum Year. In addition, there is an alternate change of flood/drought with a 10-year cycle. This paper uses the commensurable method to identify the periods of floods and droughts in the study area. According to the commensurable diagram, catastrophic nodes of the future floods or droughts in SSHR basin can be primarily predicted as follows: 2021 will be a flood year, while 2013, 2016 and 2024 will be high flow years; 2012 and 2022 will be dry years, while 2014, 2018 and 2027 will be low flow years. Moreover, forecast accuracy of flood/dry years is higher than the one of high/low flow years. Prediction of flood/drought has an error of ±1 year, which can be tracked and corrected with a scatter diagram.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference30 articles.

1. East Asian Monsoon

2. Length of the solar cycle: an indicator of solar activity closely associated with climate;Christensen;Science,1991

3. Analysis of solar activity and changes;Hao;Chin. J. Space Sci,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3