Trends in sub-hourly, sub-daily and daily extreme rainfall events in eastern Australia

Author:

Laz Orpita U.1,Rahman Ataur2,Yilmaz Abdullah3,Haddad Khaled2

Affiliation:

1. EnviroWater Sydney, Australia

2. University of Western Sydney, Australia

3. Victoria University, Australia

Abstract

Intensity and frequency of extreme rainfall are expected to change in future due to anthropogenic climate change; however, this change may not be uniform across spatial and temporal scale. This paper examines the trends of sub-hourly, sub-daily and daily extreme rainfall events from 38 rainfall stations located in southeast Australia. Two non-parametric tests (Mann–Kendall and Spearman Rho) were applied to detect trends at 10, 5 and 1% significance levels. The sub-hourly (6, 12, 18 and 30 min) and sub-daily (1, 2 and 6 h) annual maximum rainfall events generally showed an upward (positive) trend. However, the longer duration rainfall events (12–72 h) generally showed a downward (negative) trend. It was found that stations showing positive trends were characterized by higher elevations compared with the stations showing negative trends. This finding has important implications for urban stormwater management in the near future as most urban stormwater systems operate on a smaller catchment scale where sub-hourly and sub-daily rainfall events are used in their design.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3