Evaluation of climate change impacts on streamflow to a multiple reservoir system using a data-based mechanistic model

Author:

Nazif Sara1,Karamouz Mohammad2

Affiliation:

1. School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran and Polytechnic School of Engineering, New York University, Brooklyn, New York, USA

Abstract

Recent investigations have demonstrated scientists' consensus on the increase in global mean temperature and climate variability. These changes alter the hydro-climatic condition of regions. Investigation of surface water changes is an important issue in water resources planning as well as for the operation of reservoirs. In this study a data-based mechanistic (DBM) model has been used for daily streamflow simulation. This model is a data-driven statistical base simulation model that can take advantage of additional climate variables with time variable configurations. The model has been developed for simulation of streamflow to three reservoirs, located in central Iran, using the daily rainfall, temperature and streamflow data. Comparison of the DBM results with the autoregressive integrated moving average model, as an alternative model, shows its higher performance. To include climate change impacts in study, an artificial neural network-based statistical downscaling model is developed for rainfall and temperature downscaling. The downscaled temperature and rainfall data under climate change scenarios based on HadCM3 general circulation model outputs are used to evaluate the climate change impacts on streamflow for the 2000–2050 time horizon. The results demonstrate the considerable impact of climate change on streamflow variability with significantly different behaviour in the three adjacent basins.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3