The application of probabilistic climate change projections: a comparison of methods of handling uncertainty applied to UK irrigation reservoir design

Author:

Green Michael12,Weatherhead Edward Keith1

Affiliation:

1. School of Applied Sciences Building 52, Cranfield University, Cranfield, UK

2. Present address: Global Sustainability Institute (GSI), Faculty of Science & Technology, Anglia Ruskin University, Cambridge, UK

Abstract

Climate projections are increasingly being presented in terms of uncertainties and probability distributions rather than median or ‘most-likely’ values. The current national UK climate change projections, UKCP09, provide 10,000 probabilistic projections (PP) and 11 spatially coherent projections (11SCP) for three future emission scenarios. In contrast, previous iterations such as UKCIP02 provided only a single ‘most-likely’ (deterministic) projection for each. This move from deterministic to probabilistic methods of communicating climate change information, whilst increasing the wealth of the data, complicates the process of adaptation planning by communicating extra uncertainty to the public and decision-makers. This paper examines the application of probabilistic climate change projections and explores the impact of uncertainty on decision-making, using a case study of irrigation reservoir design at three sites in the UK. The implications of sub-sampling the PP using both simple random and Latin-hypercube sampling are also explored. The study found that the choice of dataset has a much larger impact on irrigation reservoir design than emission uncertainty. The study confirmed the dangers of inadequate sample size, particularly when applying decision criteria based on extreme events, and found that more advanced stratified sampling techniques did not noticeably improve the reproducibility of decision outcomes.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3