Assessment of climate change impacts in a semi-arid watershed in Iran using regional climate models

Author:

Solaymani Hamid R.1,Gosain A. K.1

Affiliation:

1. Department of Civil Engineering, IIT Delhi, India

Abstract

This paper aims to summarize in detail the results of the climate models under various scenarios by temporal and spatial analysis in the semi-arid Karkheh Basin (KB) in Iran, which is likely to experience water shortages. The PRECIS and REMO models, under A2, B2 and A1B scenarios, have been chosen as regional climate models (RCMs). These regional climate models indicate an overall warming in future in KB under various scenarios. The increase in temperature in the dry months (June, July and August) is greater than the increase in the wet months (January, February, March and April). In order to perform climate change impact assessment on water resources, the Arc-SWAT 9.3 model was used in the study area. SWAT (Soil and Water Assessment Tool) model results have been obtained using present and future climate data. There is an overall reduction in the water yield (WYLD) over the whole of the KB. The deficit of WYLD is considerable over the months of April to September throughout KB due to the increase in average temperature and decrease in precipitation under various emission scenarios. Statistical properties in box-and-whisker plots have been used to gain further understanding relevant to uncertainty analysis in climate change impacts. Evaluation of uncertainty has shown the highest uncertain condition under B2.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference66 articles.

1. Assessing the impact of climate change on water resources in Iran;Abbaspour;Water Resources Research,2009

2. Determination and evaluation of water productivity in the saline areas of lower Karkheh River Basin (KB), Iran;Absalan,2007

3. The Karkheh River basin: the food basket of Iran under pressure;Ahmad;Water International,2010

4. Mapping basin-level water productivity using remote sensing and secondary data in the Karkheh River Basin, Iran;Ahmad;Water International,2009

5. Climate change and global water resources;Arnell;Global Environmental Change,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3