Comparative study of UV/H2O2 and UV/PMS processes for treating pulp and paper wastewater

Author:

Wang Liangliang1,Fei Yuchao1,Gong Chenhao1,Shan Yue1,Zhang Zhongguo1,Zhang Fengshan2,Cheng Hongshun2

Affiliation:

1. a Institute of Resources and Environment, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing 100095, China

2. b Shandong Huatai Paper Co., Ltd, Dongying 257335, China

Abstract

Abstract Pulp and paper wastewater (PPWW) contains numerous refractory and harmful contaminants that require advanced treatment to meet the discharge criteria. This study compared the efficacy of two PPWW treatments: ultraviolet/peroxymonosulfate (UV/PMS) and ultraviolet/H2O2 (UV/H2O2) working under similar circumstances. The initial pH value, oxidant dosage, UV radiation intensity, and pseudo-first-order constant kobs were systematically studied in both systems. Optimally, the UV/PMS process produced an effluent of higher quality than the UV/H2O2, as measured by the removal efficiencies of chemical oxygen demand (COD) in 60 min, which were 48.2 and 64.3% for the respective UV/H2O2 and UV/PMS processes and corresponding kobs values of 0.0102 and 0.0159 min−1, respectively. Radical scavenging experiments demonstrated that •OH was the primary reactive oxygen species in UV/H2O2 process, and •OH and SO4−• in the UV/PMS process. Moreover, ultraviolet-visible spectroscopy and gas chromatography coupled mass spectroscopy analyses showed that deep treatment of petroleum hydrocarbons with carbon chain lengths greater than 18 and macromolecular semi-volatile organic compounds in paper wastewater is difficult, whereas the UV/PMS process can significantly improve the removal of amides, esters, phenols, and other aromatic compounds.

Funder

Beijing Science and Technology Planning Project

innovation project of beijing academy of science and technology

reform and development project of beijing academy of science and technology

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3