Study on auxiliary operation control of machine learning in multiobjective complex drainage system

Author:

Li Pengcheng1,Zhou Shihua1ORCID,Cao Jing1,Xu Wenzheng1,Zhou Juanjuan1

Affiliation:

1. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, China

Abstract

Abstract Recently, urban waterlogging prevention and treatment of black–odorous rivers have become a social concern and the upgradation of drainage system and the development of river runoff pollution control projects have accelerated. The use of deep tunnels to upgrade old drainage systems and achieve pollution control-related engineering designs has complicated the drainage system operation control. The traditional operation control mainly relies on human experience or model simulation. This study provides a perspective of machine learning for controlling the operation of the drainage system and exploring whether the operation suggestions regarding facilities in this system can be given in real time while relying only on real-time data and avoiding the complex model simulation process. Herein, five drainage systems were used as examples: the initial water level of a pipeline, key point water level flow, pump station front pool water level, and most unfavorable point water level were selected as relevant variables and four machine-learning discrimination methods were used for to analyze the weir-lowering operation of a deep tunnel. This study found that the average error rate of the linear discrimination method was <10%, thereby exhibiting satisfactory performance. This study provides insights for improving the operation of complex drainage systems.

Funder

Shanghai Science and Technology Development Foundation

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference21 articles.

1. Real-time model predictive control of a wastewater treatment plant based on machine learning;Water Science & Technology,2020

2. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy;Intensive Care Medicine,2020

3. Deep learning for smart sewer systems: assessing nonfunctional requirements,2020

4. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation;Environmental Pollution,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3