Study on Fe-C-Al three-phase micro-electrolysis treatment of low concentration phosphorus wastewater

Author:

Hu Baoming1,Qi Quan1,Li Liang1,Huan Yongzhao1,Liu Zheng1,Liu Xuqing1

Affiliation:

1. 1 School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China

Abstract

Abstract In this study, the iron-carbon-aluminum (Fe-C-Al) composite filler was prepared by aluminum modification of conventional iron-carbon (Fe-C) micro-electrolysis with a no-burn method. The optimal process conditions for Fe-C-Al three-phase micro-electrolysis treatment of low concentration phosphorus wastewater were determined to be the aluminum metal ratio of 14 wt% and solids dosing of 30 g/L. Under the optimal process conditions, Fe-C-Al three-phase micro-electrolysis was performed for the treatment of low concentration phosphorus wastewater (LCPW) with continuous experiment, while iron-carbon fillers before and after treatment were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the amount of Fe2+ dissolved in the micro-electrolysis determined the micro-electrolysis phosphorus removal effect, Al promoted the dissolution of Fe2+, and the Fe-C-Al filler had a stable phosphorus removal effect, and the average removal efficiency of phosphorus was 67.40%, which is an average improvement of 29.25% compared with the conventional Fe-C filler. The treatment of LCPW by Fe-C-Al three-phase micro-electrolysis is consistent with a first-order kinetic reaction with apparent activation energy of 38.70 kJ·mol−1, which is controlled by the chemical reaction.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference27 articles.

1. Removal of phosphorus in rural domestic sewage by new iron-carbon micro-electrolysis filler;Technology of Water Treatment,2017

2. Increasing the hydrophyte removal efficiency of dissolved inorganic phosphorus using a novel Fe-Mg-loaded activated carbon hydroponic substrate with adsorption-release dual functions;Journal of Environmental Management,2022

3. Emerging technologies for phosphorus removal and recovery: a review;Applied Mechanics and Materials,2014

4. Preparation of Fe/C-MgCO3 micro-electrolysis fillers and mechanism of phosphorus removal;Environmental Science and Pollution Research,2022

5. Removal of phosphate from river water using a new baffle plates electrochemical reactor;MethodsX,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3