Fe@Fe2O3-loaded biochar as an efficient heterogeneous Fenton catalyst for organic pollutants removal

Author:

Chen Diwei1,Zheng Zhiyan1,Zhang Feiji1,Ke Rufu1,Sun Nan1,Wang Yonghao1,Wang Yongjing1

Affiliation:

1. 1 Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China

Abstract

Abstract With increased demand for various chemical raw materials, sudden pollution incidents are more prone to occur during their transportation and usage, threatening the environment and human health. In this study, discarded tea stalks were recycled into composite materials (FSC-X00: X represents the calcination temperature) by impregnating tea stalks in Fe2+ solution combined with subsequent calcination. X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) patterns verified the existence of Fe0 and Fe2O3, and Fe2O3 was gradually reduced to Fe0 when the calcination temperature was raised from 700 °C to 900 °C. FSC-X00 was adopted as a heterogeneous catalyst for activating H2O2 to quickly degrade phenol in the water system. The degradation experiments indicated that FSC-600 exhibited superior degradation performance for phenol (20 mg/L) within 5 min and 80% total organic carbon (TOC) removal rate at pH = 3 within 30 min. The effects of the calcination temperature, the pH value and the amount of H2O2 on the degradation efficiency were investigated. Competing experiments showed that fulvic acid (FA) and inorganic salts Na+ had little effect on the degradation performance. The FSC-600 catalyst can be reused by thermal reduction. In addition, it was found that FSC-600 has a good degradation effect on ciprofloxacin (CIP), norfloxacin (NOR) and enrofloxacin (ENR), indicating that FSC-600 catalysts are a promising candidate for quick degradation of organic pollutants by Fenton reaction. Electron paramagnetic resonance (EPR) spectra analysis indicated that •OH is the dominant reactive oxygen species (ROS) and part 1O2 from O2 also participated in the degradation. This study provides an example of creating catalysts from organic solid waste for use in emergency treatment for phenol.

Funder

Natural Science Foundation of Fujian Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3