Fate of phthalates in a river receiving wastewater treatment plant effluent based on a multimedia model

Author:

Wang Chenchen123,Guo Yaqi1,Feng Lixia4,Pang Weiliang5,Yu Jingjie12,Wang Shaopo12,Qiu Chunsheng12,Li Chaocan12,Wang Yufei12

Affiliation:

1. a School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China

2. b Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China

3. c Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

4. d Tianjin United Environmental Protection Engineering Design Co., Ltd, Tianjin 300191, China

5. e Tianjin Academy of Environmental Sciences, Tianjin 300191, China

Abstract

Abstract Phthalic acid esters (PAEs) can enter environment media by secondary effluent discharge from wastewater treatment plants (WWTP) into receiving rivers, thus posing a threat to ecosystem health. A level III fugacity model was established to simulate the fate and transfer of four PAEs in a study area in Tianjin, China, and to evaluate the influence of WWTP discharge on PAEs levels in the receiving river. The results show that the logarithmic residuals of most simulated and measured values of PAEs are within one order of magnitude with a good agreement. PAEs in the study area were mainly distributed in soil and sediment phases, which accounted for 84.66%, 50.26%, 71.96% and 99.09% for dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), respectively. The upstream advection accounted for 77.90%, 93.20%, 90.21% and 90.93% of the total source of DMP, DEP, DBP and DEHP in the river water, respectively, while the contribution of secondary effluent discharge was much lower. Sensitivity analysis shows that emission and inflow parameters have greater influences on the multimedia distributions of PAEs than physicochemical and environmental parameters. Monte Carlo analysis quantifies the uncertainties and verifies the reliability of the simulation results.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Secretaría de Investigación, Internacionales y Posgrado, Universidad Nacional de Cuyo

Research Project of Tianjin Education Commission

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3