The extraction of polycyclic aromatic hydrocarbons from water samples with aromatic-dithiocarbamate modified magnetic nanoparticles

Author:

Ma Yurong12,Niu Hongyun2,Cai Yaqi2,Luo Ting1,Zhu Junya1,Chen Meng1,He Jun1,Liu Zixuan1,Gu Xiang1,Yin Chang1

Affiliation:

1. a School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China

2. b State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China

Abstract

Abstract Considering the urgent need for the analysis of trace-level pollutants in water samples, the pre-concentration of micropollutants in water samples has been the focus of extensive research. Among current pretreatment methods, the solid phase extraction (SPE) technique has received enormous attention because of its low cost, ease of operation and high efficiency. In this work, a new adsorbent (Fe3O4@Au@DTC NPs) was acquired through modification of Fe3O4 nanoparticles (NPs) with gold (Au) and dithiocarbamate (DTC). To investigate their application ability, the adsorbent were utilized as an SPE adsorbent to enrich polycyclic aromatic hydrocarbons in water (PAHs, fluoranthene, pyrene, benzo anthracene, benzo fluoranthene, benzo pyrene). The obtained Fe3O4@Au@DTC NPs were confirmed by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), and UV-Vis spectrum. Under optimal conditions, the calibration curves were obtained in the range of 10–500 ng L−1, while the limit of detection (LOD) ranged in 1.17–2.31 ng L−1. Furthermore, 50 mg of Fe3O4@Au@DTC NPs could extract trace PAHs from 500 mL real water samples into 1 mL eluent, and the spiked recoveries of five PAHs in river water and tap water reached 72–106% with relative standard deviations varying between 3.3–5.18%. Through the conversion of amines into DTC, we acquire desiring group modified Fe3O4 NPs, which showed great prospects in magnetic solid-phase extraction sphere and environmental field.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3