The highly efficient simultaneous removal of Pb2+ and methylene blue induced by the release of endogenous active sites of montmorillonite

Author:

Luan Jingde12,Zhao Chen2,Zhai Qian2,Liu Wengang3,Ke Xin2,Liu Xiaoyang1

Affiliation:

1. a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China

2. b College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China

3. c School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China

Abstract

Abstract The inherent periodic structure of montmorillonite limits the adsorption capacity of its endogenous active units such as Si-O tetrahedron and Al-O octahedron for pollutants. The high-intensity ultrasound method was used to release these active units and the layer-by-layer assembly was adopted to prepare carbon@chitosan@montmorillointe microsphere adsorbent (C@CS@Mt) to give full play to the adsorption capacity of montmorillonite. The montmorillonite nanosheet exhibited good hole-making ability, resulting in high surface area, pore volume and pore diameter of microspheres. Benefitting from the release of active sites in Si-O tetrahedron and Al-O octahedron of montmorillonite nanosheets, the adsorption capacity of C@CS@Mt was significantly improved. The maximum adsorption capacities of Pb2+ and methylene blue (MB) reached 884.19 mg·g−1 and 326.21 mg·g−1, respectively. The simultaneous adsorption experiments indicated that the occupation of active sites by Pb2+ caused the observed decrease of MB adsorption capacity. The theoretical calculations indicated that Pb was preferentially adsorbed by active adsorption units due to strong electron donating ability in comparison to MB. As an active unit, Si-O tetrahedron exhibited stronger adsorption capacity for cationic dyes than Al-O octahedron due to both the large electronegativity and lower adsorption binding energy.

Funder

Liaoning Revitalization Talents Program

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3