Fouling reduction in nanofiltration membranes in the treatment of municipal sewage – effect of coagulant type used for prior chemically enhanced primary treatment

Author:

Fida Sadia1ORCID,Haydar Sajjad2ORCID,Zeeshan Muhammad34

Affiliation:

1. a Department of Environmental Engineering, University of Engineering and Technology, Taxila 47080, Pakistan

2. b Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore 54000, Pakistan

3. c German Environment Agency, Section II 3.3, Schichauweg 58, Berlin 12307, Germany

4. d Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, Berlin 10623, Germany

Abstract

Abstract The limiting factor in wide-scale application of membranes for wastewater treatment is membrane fouling. Coagulation has emerged as an effective technique for fouling control. In this research, municipal wastewater was treated using a two-stage treatment. In stage-1, chemically enhanced primary treatment (CEPT) was rendered using an optimum dose of two coagulants, i.e. alum, ferric chloride and a 1:1 mix of both. The optimum doses for coagulants were determined using a jar test. In stage-2, a nanofiltration (NF) membrane was used to further treat the effluent from stage-1. In CEPT, the 1:1 mixture of coagulants showed maximum removals, i.e. 75–77% for the total suspended solids and 73–75% for the chemical oxygen demand (COD). Stage-2 provided 85–95% removals for turbidity (0.88 nephelometric turbidity units), COD (41 mg/L), total dissolved solids (101 mg/L), hardness (11 mg/L as CaCO3), chlorides (80 mg/L), and heavy metals (copper [0.03 mg/L] and lead [0.02 mg/L]). The operational time of the NF membrane was 46 min, 55 min and 70 min using alum, ferric chloride, and mix (1:1), respectively. Significant reduction was observed in membrane fouling for 1:1 mixture of coagulants. The effluent met the US Environmental Protection Agency guidelines for non-potable reuse.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3