Insights into enhanced removal of Cd2+ from aqueous solutions by attapulgite supported sulfide-modified nanoscale zero-valent iron

Author:

Ren Jun123,Ma Gui124,Zhao Weifan1,Tao Ling123,Zhou Yue4,Liao Caiyun4,Tian Xia4,Wang Huan4,Meng Kai1,He Yongjie1,Dai Liang12

Affiliation:

1. a Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China

2. b School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

3. c Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China

4. d College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China

Abstract

Abstract The sulfidation of nanoscale zerovalent iron (nZVI) has received increasing attention for reducing the oxidizability of nZVI and improving its reactivity toward heavy metal ions. Here, a sulfide (S)-modified attapulgite (ATP)-supported nanoscale nZVI composite (S-nZVI@ATP) was rapidly synthesized under acidic conditions and used to alleviate Cd2+ toxicity from an aqueous solution. The degree of oxidation of S-nZVI@ATP was less than that of nZVI@ATP, indicating that the sulfide modification significantly reduced the oxidation of nZVI. The optimal loading ratio was at an S-to-Fe molar ratio of 0.75, and the adsorption performance of S-nZVI@ATP for Cd2+ was significantly improved compared with that of nZVI@ATP. The removal of Cd2+ by S-nZVI@ATP was 100% when the adsorbent addition was 1 g/L, the solution was 30 mL, and the adsorption was performed at 25 °C for 24 h with an initial Cd2+ concentration of 100 mg/L. Kinetics studies showed that the adsorption process of Cd followed the pseudo-second-order model, indicating that chemisorption was the dominant adsorption mechanism. The adsorption of Cd2+ by S-nZVI @ATP is dominated by the complexation between the iron oxide or iron hydroxide shell of S-nZVI and Cd2+ and the formation of Cd(OH)2 and CdS precipitates.

Funder

the Foundation of Key Laboratory of Yellow River Environment of Gansu Province

Science and Technology Program of Gansu Province

the Lanzhou Talent Innovation and Entrepreneurship Project

Natural Science Foundation for Young Scientists of Shanxi Province

the National Training Programs of Innovation and Entrepreneurship for Undergraduates

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3