Affiliation:
1. a modelEAU, Université Laval, 1065, Avenue de la Médecine, Québec, QC G1 V 0A6, Canada
2. b CentrEau, Québec Water Research Center, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada
Abstract
Abstract
Nowadays, modelling, automation and control are widely used for Water Resource Recovery Facilities (WRRF) upgrading and optimization. Influent generator (IG) models are used to provide relevant input time series for dynamic WRRF simulations used in these applications. Current IG models found in literature are calibrated on the basis of a single performance criterion, such as the mean percentage error or the root mean square error. This results in the IG being adequate on average but with a lack of representativeness of, for instance, the observed temporal variability of the dataset. However, adequately capturing influent variability may be important for certain types of WRRF optimization, e.g., reaction to peak loads, control system performance evaluation, etc. Therefore, in this study, a data-driven IG model is developed based on the long short-term memory (LSTM) recurrent neural network and is optimized by a multi-objective genetic algorithm for both mean percentage error and variability. Hence, the influent generator model is able to generate a time series with a probability distribution that better represents reality, thus giving a better influent description for WRRF design and operation. To further increase the variability of the generated time series and in this way approximate the true variability better, the model is extended with a random walk process.
Subject
Water Science and Technology,Environmental Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献