Role of emerging chitosan and zeolite-modified adsorbents in the removal of nitrate and phosphate from an aqueous medium: A comprehensive perspective

Author:

Italiya Gopal1ORCID,Subramanian Sangeetha1

Affiliation:

1. 1 School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India, 632014

Abstract

Abstract Due to industrialization and population growth, freshwater supplies are diminishing and becoming impure with high organic pollutant concentrations such as nitrate and phosphate, which shows a high adverse impact on aquatic and human lives. In drinking water sources, particularly groundwater, nitrate is considered as one of the major pollutants which causes methemoglobinemia (in newborn infants), carcinogenic activities and diabetes. Excess concentration of phosphate leads to eutrophication and death of aquatic species due to reduced dissolved oxygen content. Therefore, all countries must implement highly effective technologies for treating wastewater. Chitosan and zeolite are naturally occurring and cost-effective adsorbent materials with a higher surface area that exhibit greater nitrate and phosphate adsorption. Surface modification of chitosan and zeolite increases the adsorption capacity of adsorbents for the removal of both anions selectively. This paper reviews the current development of modified chitosan and zeolite adsorbents for anion adsorption, with an emphasis on modification by zero and multivalent metals and metal oxides, different surfactants, biomass-derived carbon, and natural and synthetic polymers. Multiple adsorption parameters, optimum adsorption condition, adsorption mechanism, regeneration study, research gap and future aspects have been explained for further research work.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference149 articles.

1. Sustainable adsorptive removal of antibiotic residues by chitosan composites: an insight into current developments and future recommendations;Arabian Journal of Chemistry,2022

2. Nitrate removal from drinking water using different reactor/membrane types : a comprehensive review;International Research Journal of Public and Environmental Health,2022

3. Adsorption of nitrates using quaternized chitosan resin;Journal of Chemical Engineering & Process Technology,2017

4. Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions;Cold Regions Science and Technology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3