Municipal wastewater treatment with corrugated PVC carrier anaerobic baffled reactor

Author:

Ullah Nadeem1,Sheikh Zeshan1ORCID,Badshah Malik2ORCID

Affiliation:

1. a Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. b Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan

Abstract

Abstract The anaerobic baffled reactor (ABR) is a promising solution for decentralized wastewater treatment due to its low operation cost as compared to the activated sludge process, but it requires comparatively higher hydraulic retention time (HRT). This ultimately increases land requirement, capital and construction cost of treatment plant. This study investigates performance of ABR using polyvinyl chloride (PVC) corrugated pipe as carrier media to improve biomass retention capacity and treatment performance of reactor with the aim to reduce HRT. Comparative performance of two ABRs with and without carrier media was analyzed under mesophilic conditions (35 ± 1 °C) for organics and total suspended solids (TSS) removal at HRTs of 24, 18, 12, 8, 6 and 4 h. Results showed that at HRTs of 24–08 h, the organics removal performance of the carrier anaerobic baffled reactor (CABR) was better than ABR and was in the range of 77–81% for CABR as compared to 64–70% for ABR. However, on further decrease in HRT to 6 h, CABR sustained the treatment with organics removal of 80%, while ABR performance reduced to 58%, creating a performance difference of 38%. Average total suspended solids (TSS) removal was in the range of 76–83% at all HRTs for both reactors. Therefore, this study identified CABR with PVC carrier media as an effective low-HRT reactor for organics and SS removal with less land area requirement.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3