Development and performance evaluation of SCS-CN based hybrid model

Author:

Upreti Pankaj12,Ojha C. S. P.1

Affiliation:

1. a Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India

2. b Department of Agricultural Engineering, GMV Rampur Maniharan, Saharanpur 247451, India

Abstract

Abstract In this study, a hybrid approach has been used to increase the predictive efficiency of the SCS-CN model. A recently proposed Ajmal model (developed after randomized configuration) that ignored initial abstraction and maximum potential retention has been given the conceptual framework of the SCS-CN model and a new outcome-based hybrid model (Miv) was formulated. A total of 78 watersheds (7817 events) were used for calibration and the remaining 36 watersheds (3967 events) for validation to develop this hybrid model. The numerical value of hybrid model parameters Lc, λ and S were calibrated using calibration dataset and a simple non-linear one-parameter model has been developed. The performance of the Ajmal (Miii) and hybrid model (Miv) was compared with the original SCS-CN method (λ = 0.2 as Mi and λ = 0.05 as Mii). The performance of models was compared by using four statistical error indices i.e. RMSE, NSE, PBIAS, and n(t) and applying ranking and grading system (RGS). The mean RMSE, NSE, PBIAS, and n(t) values were found superior for Miv (5.60 mm, 0.71, 6.97%, 1.15) model followed by Miii (5.98 mm, 0.65, 16.52%, 1.01), Mii (6.27 mm, 0.61, 20%, 0.90) and Mi (6.98 mm, 0.46, 24.2%, 0.72) model for tested watersheds. The hybrid model (Miv) exhibited consistently well performance for all size watersheds. On the basis of the agreement between watershed runoff coefficient (C) and calibrated model parameter (Lc or CN), R2 value was found relatively higher for hybrid model (Miv) than other models.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference35 articles.

1. Quantifying excess stormwater using SCS-CN–based rainfall runoff models and different curve number determination methods;Journal of Irrigation and Drainage Engineering,2015

2. Improved runoff estimation using event-based rainfall-runoff models;Water Resources Management,2015

3. A simple, regionally parameterized model for predicting nonpoint source areas in the northeastern US;Journal of Hydrology: Regional Studies,2014

4. Determination of watershed curve number using derived distributions;Journal of Irrigation and Drainage Engineering,1997

5. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China;Catena,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3