The role of attached bacteria in the formation of Microcystis colony in Chentaizi River

Author:

Dai Wei1ORCID,Ruan Weilin1,Bi Xiangdong1,Zhang Dajuan1

Affiliation:

1. Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, Department of Fisheries Sciences, Tianjin Agricultural University, Tianjin 300384, China

Abstract

Abstract To further understand the role of attached bacteria in the formation of Microcystis colonies, we conducted a field investigation in Chentaizi River in Tianjin, China, which frequently suffers Microcystis blooms in summer. The results showed the average cell density of Microcystis was 2.31 × 107 cell/L from July 19 to July 27, 2021. Free-living and attached bacteria communities shared similar phylum diversity, but the abundance changed obviously. The colony size of Microcystis and attached bacterial number in the colony showed an increasing trend during the whole sampling period. There was a significant positive correlation between Microcystis colonial size and attached bacterial density (P < 0.01), indicating attached bacteria could contribute the colony formation of Microcystis. The genus composition in attached bacterial community varied in colonies of different sizes. The relative abundance of Acinetobacter, Cloacibacterium, Sphingobacterium, and Ralstonia in >90 μm colonies were significantly higher than those in 8–20 μm and 20–90 μm colonies (P < 0.05). These genera might have positive effects on the colony formation of Microcystis during sampling.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds of Tianjin Universities

Gansu Science and Technology Project for People's Livelihood

Special Project for Science and Technology Development of Local (Tianjin) under the Guidance of the Central Government

Freshwater Aquaculture Industrial Technology Research System Innovation Team of Tianjin

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3