Granulation strategies applied to industrial wastewater treatment: from lab to full-scale

Author:

Caluwé M.1,Goossens K.1,Seguel Suazo K.1,Tsertou E.1,Dries J.1ORCID

Affiliation:

1. 1 Research group BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium

Abstract

Abstract About one third of the industrial activated sludge (AS) plants worldwide suffer from bad settling sludge, often caused by filamentous bulking phenomena. The present study investigated the effectiveness of a sludge granulation/densification strategy, based only on a metabolic selection mechanism, to eliminate sludge bulking in a sequencing batch reactor (SBR) treating real industrial wastewater. The wastewater originated from a tank truck cleaning company transporting chocolate and beer. The proposed strategy involved the introduction of a slow unaerated/anaerobic feeding step in the SBR operation. On lab-scale, the new feeding strategy resulted in (1) excellent settling with a sludge volume index (SVI) decreasing from more than 300 mL·g−1 to 100 mL·g−1 and lower, (2) the elimination of sludge bulking genera and (3) the significant enrichment of glycogen-accumulating organisms (GAO), mainly Defluviicoccus and Candidatus Competibacter, and this in less than 80 days. The feeding strategy was then applied to the full-scale installation, yielding similar results: a stable average SVI of 37 mL·g−1 was reached after approximately 150 days. Full granulation was however not reached, which warrants further optimization. The present study shows that the proposed strategy can easily be applied in existing SBR systems to solve the problem of sludge bulking.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference32 articles.

1. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities;PLoS ONE,2015

2. Ampvis2: an R package to analyse and visualise 16S rRNA amplicon data (preprint);Bioinformatics,2018

3. Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes

4. Formation of aerobic granular sludge during the treatment of petrochemical wastewater;Bioresource Technology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3