Photocatalytic and adsorptive performance of polyvinyl alcohol/chitosan/TiO2 composite for antibiotics removal: single- and multi-pollutant conditions

Author:

N Neghi1,Kumar Mathava2

Affiliation:

1. a Department of Civil Engineering, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India

2. b Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai 600036, India

Abstract

Abstract A polymer-TiO2 macro composite (i.e., PVA-CS-TiO2) was synthesized via chemical precipitation of PVA-CS-TiO2 blend in alkali/solvent medium and applied for the removal of three model antibiotics (i.e., metronidazole (MNZ), ceftiofur (CEF) and tetracycline (TET)), as single compound and multi-compound conditions. The photocatalytic and adsorptive removals of antibiotics (concentrations of 0.1, 1 and 10 mg L−1) by the composite in an UV reactor system (32 W UV-C power, 0.3 g L−1 of composite) was assessed through kinetic models. Antibiotics adsorption followed pseudo-second-order kinetics, and the order of adsorption was MNZ > TET > CEF. On the other hand, the hydrophilic MNZ was degraded faster compared to hydrophobic CEF and TET drugs. Moreover, UV reactor system exhibited antagonistic behavior under multi-compound condition. Micro-toxicity of antibiotics was performed using bioluminescent bacterium Vibrio fischeri and EC50 of CEF, TET and MNZ were found to be 18.25 mg L−1, 173.8 mg L−1, and 668.6 mg L−1, respectively. However, the relative toxicity levels of PVA-CS-TiO2 and treated effluent were well with the limits as inferred from the microtoxicity analysis. Thus, synthesized biocompatible composite exhibited structural stability, consistent performance for three photocatalytic cycles for all antibiotics at a minimal catalyst loading, easily retained using metallic tea strainer and does not exhibit microtoxicity has a scope for real-time applications.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3