The link between organic matter composition and the biogas yield of full-scale sewage sludge anaerobic digestion

Author:

Liu Jin1ORCID,Smith Stephen R.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK

Abstract

Abstract The principal parameters influencing anaerobic digestion (AD) of sewage sludge have been extensively studied in controlled laboratory experiments, but the effects of sludge composition on full-scale systems have received relatively little attention. Sludge samples from eight major wastewater treatment plants (WWTPs) in the UK were examined to determine the effects of sludge composition on digestion performance. The biogas yield (BY) was estimated by two different methods: (1) a standard approach based on the reduction in volatile solids (VS), and (2) a more detailed mass balance of major constituent fractions of organic matter in sludge. The results showed that BY increased significantly with the overall amount of VS contained in digester feed sludge. In terms of the effects of individual fractions, BY was significantly related to and increased with the fat and cellulose contents in raw sludge, consistent with the high calorific value of fat and the digestibilities of both substrates, relative to the other major organic components. The results demonstrated the importance of sludge composition on digester performance and strategies to maximise BY were identified, for instance, by increasing codigestion of high fat containing substrates, and by utilising fat, oil and grease collected in-sewer and at WWTP.

Funder

Anglian Water Services Ltd, Severn Trent Plc, Thames Water Utilities Limited, United Utilities Group Plc, and Yorkshire Water Services Ltd

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3