Wastewater-based epidemiology (WBE) for SARS-CoV-2 – A review focussing on the significance of the sewer network using a Dublin city catchment case study

Author:

Mac Mahon Joanne1ORCID,Criado Monleon Alejandro Javier1,Gill Laurence W.1,O'Sullivan John J.2,Meijer Wim G.3

Affiliation:

1. a School of Engineering, Trinity College Dublin

2. b UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin

3. c UCD School of Biomolecular & Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin

Abstract

Abstract Wastewater-based epidemiology (WBE) has been employed by many countries globally since the beginning of the COVID-19 pandemic in order to assess the benefits of this surveillance tool in the context of informing public health measures. WBE has been successfully employed to detect SARS-CoV-2 at wastewater treatment plants for community-wide surveillance, as well as in smaller catchments and institutions for targeted surveillance of COVID-19. In addition, WBE has been successfully used to detect new variants, identify areas of high infection levels, as well as to detect new infection outbreaks. However, due to to the large number of inherent uncertainties in the WBE process, including the inherent intricacies of the sewer network, decay of the virus en route to a monitoring point, levels of recovery from sampling and quantification methods, levels of faecal shedding among the infected population, as well as population normalisation methods, the usefulness of wastewater samples as a means of accurately quantifying SARS-CoV-2 infection levels among a population remains less clear. The current WBE programmes in place globally will help to identify new areas of research aimed at reducing the levels of uncertainty in the WBE process, thus improving WBE as a public health monitoring tool for future pandemics. In the meantime, such programmes can provide valuable comparisons to clinical testing data and other public health metrics, as well being an effective early warning tool for new variants and new infection outbreaks. This review includes a case study of sampled wastewater from the sewer network in Dublin, Ireland, during a peak infection period of COVID-19 in the city, which evaluates the different uncertainties in the WBE process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3