Toxicity of silver nanoparticles on Achromobacter denitrificans: effect of concentration, temperature and coexisting anions

Author:

Li Yinghua1,Ren Xiaoyu1,Yin Wenyue1

Affiliation:

1. 1 School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang 110819, China

Abstract

Abstract The indoor culture method was carried out to study the toxic effect of silver nanoparticles (AgNPs) on Achromobacter denitrificans. Specifically, the effects of AgNPs concentration, temperature and coexisting anions were analyzed. The results showed that AgNPs exerted significant inhibition on the bacteria, which was closely correlated with its concentration and temperature. Both the ammonia oxidation and generation capacity of Achromobacter denitrificans decreased significantly with an increase in AgNPs concentration. Compared with the inhibition performance at 30 °C, NH4+-N generation rates decreased by 45.31% at 20 °C and 17.58% at 40 °C, respectively, revealing that too low or too high temperature induced to reduce the nitrogen conversion ability of Achromobacter denitrificans. While compared with temperature, the effect of coexisting ions (Cl− and SO42−) was not significant (P > 0.05). Electron microscopy observations found that AgNPs non-specifically bound to the cells (content ranging from 0.04% to 0.10%) and acted on the cell surface structure, causing wrinkles, depressions, and ruptures on the surface of cell membranes, and leakage of substances in the membranes. AgNPs increased the rate of cell apoptosis and decreased the cell body volume mainly with short-term acute effects.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference28 articles.

1. The impact of bacterial size on their survival in the presence of cationic particles of nano-silver;Journal of Trace Elements in Medicine and Biology,2020

2. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna;Journal of Nanobiotechnology,2012

3. Project on emerging nanotechnologies-consumer product inventory evaluated;Nanotechnology Law and Business,2010

4. An overview of silver nano-particles as promising materials for water disinfection;Environmental Technology & Innovation,2021

5. Nanomaterials and nanoparticles: sources and toxicity;Biointerphases,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3