Individual and synergic effect of carbamazepine and diclofenac in the removal of organic matter from an expanded granular bed anaerobic reactor

Author:

Baquero Eva Sandrith1,Rodríguez Diana C.1ORCID,Peñuela Gustavo A.1ORCID

Affiliation:

1. Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia

Abstract

Abstract Due to the negative effects caused to the natural environment by the presence of pharmaceutical-type traces and other pollutants in wastewater, it is necessary to develop and optimize efficient treatment systems. This study evaluated the effect of carbamazepine (CBZ) and diclofenac (DCF) on the behavior of seven EGSB (expanded granular sludge bed) anaerobic reactors at laboratory scale, using chromatographic and physicochemical analyses of the influent, effluent, and the biomass contained in the reactors. The results showed that CBZ had a greater effect on the removal and behavior of microorganisms than DCF, with average efficiencies of 34.04 ± 18.58%, 20.76 ± 8.51% and 16.29 ± 11.08% during stage II, III and IV, respectively, for CBZ, and 92.37 ± 12.74%, 26.77 ± 5.90% and 22.28 ± 9.60% during stage II, III and IV, respectively, for DCF. Additionally, it was found that the interaction of the co-substrate used (sodium acetate) in conjunction with the pharmaceutical compounds decreased the efficiency of the system in terms of the removal of analytes.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3