Isolation of Bacillus sp. with high laccase activity for green biodecolorization of synthetic textile dyes

Author:

Yang Jing12,Xu Hao12,Zhao Jian12,Zhang Ning12,Xie Jingcong12,Jiang Jianchun12

Affiliation:

1. a Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China

2. b Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China

Abstract

Abstract New Bacillus sp. strains with spore-laccase activity were isolated from rotten wood and soil samples and were identified as Bacillus sp. FM-78 and Bacillus paramycoides FM-86 by 16S rDNA gene sequence analysis. Both laccases were stable at broad pH range and high temperature. The laccase of strain FM-78 showed preferable activity and stability, with no loss of activity after 7 days incubation at pH 9.0, and 20.36% of its initial activity obtained after 10 h at 80 °C. 1 mmol/L EDTA, NaN3 and SDS resulted in about 46–59% inactivation and strongly inhibition (87.88%) was caused by 1 mmol/L L-cysteine. However, the spore laccase could tolerate towards 0.5 mol/L NaCl as well as 10% of organic solvents. Reactive black 5, reactive blue 19 and crystal violet were decolorized by the spore laccase in the absence of mediator. The decolorization process was efficiently promoted with the presence of acetosyringone, and the color removal ratio was more than 80% in 1 h with the pH values of 6.6 or 9.0. Finally, the above unusual properties of Bacillus sp. spore laccase indicated it as a potential candidate in the dye decolorization in an ecofriendly and cost-effective way.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

Jiangsu Province Biomass Energy and Material Laboratory

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3