Affiliation:
1. a Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India
2. b Department of Civil Engineering, B.M.S. College of Engineering, Bangalore, Karnataka 560019, India
Abstract
Abstract
In this research, zinc oxide (ZnO) nanoparticles synthesized using neem leaf (Azadirachta indica) extract were used as an adsorbent for removing two widely used pharmaceutical compounds acetaminophen (AMP) and sulfadiazine (SDZ). The synthesized ZnO nanoparticles were characterized using SEM-EDS, FTIR, TEM, BET, and XRD analysis. The synthesized ZnO nanoparticles were found to be in the size range of 10 nm with a surface area of 48.551 m2/g. The adsorptive performance of ZnO nanoparticles in both mono-component (MoS) and multi-component system (MuS) was investigated under various operational parameters viz. contact time, temperature, pH, concentration of pharmaceutical compound and ZnO nanoparticles dose. It was observed that the maximum adsorption capacity of ZnO nanoparticles was 7.87 mg/g and 7.77 mg/g for AMP and SDZ, respectively, under the optimum conditions of 7 pH and 2 g/L adsorbent dosage. The experimental data best-fitted with the pseudo-second-order model and Langmuir model, indicating monolayer chemisorption. Further investigation on removal of AMP and SDZ from multicomponent system was modelled using a Langmuir competitive model. The desorption study has shown 25.28% and 22.4% removal of AMP and SDZ from the surface of ZnO nanoparticles. In general, green synthesized ZnO nanoparticles can be utilized effectively as adsorbent for removal of pharmaceutically active compounds from wastewater.
Subject
Water Science and Technology,Environmental Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献