Novel preparation of stable and highly photocatalytic Z-scheme Cs3PW12O40/Ag3PO4 photocatalysts for the photocatalytic degradation of organic contaminants in water

Author:

Duan Mengtian1,Wu Daoxin1,Ji Yu1,Tong Haixia1

Affiliation:

1. College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China

Abstract

Abstract The Cs3PW12O40/Ag3PO4 (CsPW/Ag3PO4) heterojunction photocatalyst in this study was prepared using a simple chemical precipitation method. Spherical CsPW particles were successfully deposited on Ag3PO4 nanocrystals, all the as-prepared samples are characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). The catalyst activity in relation to rhodamine B (RhB) degradation was evaluated under visible light (λ > 420 nm). The CsPW/Ag3PO4 heterojunction photocatalyst can effectively degrade RhB. The Z-scheme 3% CsPW/Ag3PO4 heterojunction photocatalyst has a higher photocatalytic ability compared with the single-component photocatalyst CsPW or Ag3PO4. The comparatively high photocatalytic performance can be attributed to the high matching of the energy band position and close interface contact, suggesting an enhanced separation efficiency of the photoinduced carriers of the CsPW/Ag3PO4 heterojunction photocatalyst. The reactive species trapping experiments demonstrated photogenerated holes (h+) and superoxide radicals to be the main active components of photocatalytic degradation. A possible photocatalytic mechanism is subsequently proposed.

Funder

Hunan Province Strategic New Major Project

Changsha Science and Technology Plan Project

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3