Estimation of nitrous oxide emissions from rice paddy fields using the DNDC model: a case study of South Korea

Author:

Khokhar Nadar Hussain1,Ali Imran2,Maitlo Hubdar Ali3ORCID,Abbasi Naeem4,Panhwar Sallahuddin1,Keerio Hareef Ahmed5,Ali Asim6,Uddin Salah1

Affiliation:

1. a Department of Civil Engineering, NUST Balochistan Campus, National University of Sciences and Technology, Quetta, Pakistan

2. b Department of Environment Sciences, Sindh Madressatul Islam University, Karachi, Sindh, Pakistan

3. c Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi, Sindh, Pakistan

4. d Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada

5. e Department of Environment Engineering, Quaid E Awam University of Engineering Science and Technology, Nawabshah 67450, Pakistan

6. f Department of Civil Engineering Technology, The Benazir Bhutto Shaheed University of Technology & Skill Development, Khairpur (Mir), Pakistan

Abstract

Abstract The Denitrification-Decomposition (DNDC)-Rice is a mechanistic model which is widely used for the simulation and estimation of greenhouse gas emissions [nitrous oxide (N2O)] from soils under rice cultivation. N2O emissions from paddy fields in South Korea are of high importance for their cumulative effect on climate. The objective of this study was to estimate the N2O emissions and biogeochemical factors involved in N2O emissions such as ammonium (NH4+) and nitrate (NO3−) using the DNDC model in the rice-growing regions of South Korea. N2O emission was observed at every application of fertilizer and during end-season drainage at different rice-growing regions in South Korea. Maximum NH4+ and NO3− were observed at 0–10 cm depth of soil. NH4+ increased at each fertilizer application and no change in NO3− was observed during flooding. NH4+ decreased and NO3− increased simultaneously at end-season drainage. Minimum and maximum cumulative N2O emissions were observed at Chungcheongbuk-do and Jeju-do regions of South Korea, respectively. The simulated average cumulative N2O emission in rice paddies of South Korea was 1.37 kg N2O-N ha−1 season−1. This study will help in calculating the total nitrogen emissions from agriculture land of South Korea and the World.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3