Graph method for critical pipe analysis of branched and looped drainage networks

Author:

Dastgir Aun1ORCID,Hesarkazzazi Sina1,Oberascher Martin1,Hajibabaei Mohsen1,Sitzenfrei Robert1ORCID

Affiliation:

1. 1 Unit of Environmental Engineering, Department of Infrastructure Engineering, Faculty of Engineering Sciences, University of Innsbruck, Technikerstrasse 13, Innsbruck 6020, Austria

Abstract

Abstract Enhancing resilience of drainage networks is a crucial practice to protect both humans and nature. One way to enhance resilience is to identify critical parts of drainage networks for targeted management and maintenance strategies. While hydrodynamic modelling approaches for identification are computationally intensive, in this study, a novel method based on complex network analysis is used to determine the most critical pipes in a benchmark and a real network of an Alpine municipality. For evaluation, the results of the proposed graph method are compared with hydrodynamic simulations in terms of accuracy and computational time. Results show that the proposed method is very accurate (R2 = 0.98) for branched benchmark network while the accuracy reduces slightly for the more complex real network (R2 = 0.96). Furthermore, the accuracy of the proposed method decreases with increasing loop degree and when the system is pressured with higher return period rainfall. Although the outcomes of the proposed method show slight differences to hydrodynamic modelling, it is still very useful because the computational time and data required are much less than a hydrodynamic model.

Funder

Austrian Science Fund

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3