Facilitation of interspecies electron transfer in anaerobic processes through pine needle biochar

Author:

Mohan Chander1,Annachhatre Ajit1ORCID

Affiliation:

1. 1 Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India

Abstract

Abstract Role of biochar in promoting methanogenesis during anaerobic processes was investigated in this research. Biochar produced from Himalayan pine needles was used as medium for conductive material mediated interspecies electron transfer (CM-IET) amongst the electron producing microorganisms and electron consuming methanogenic archaea. Three anaerobic continuous stirrer tank reactors (CSTRs) with 0, 5 and 10 g/L pine needle biochar (PNB) were operated at steady state organic loading rate (OLR) of 2.0–2.5 kgCOD/(m3.d). R0 (0 g/L PNB), representing indirect interspecies electron transfer (IIET), failed at an OLR of 2.0 kgCOD/(m3.d) due to the highest volatile fatty acid (VFA) concentration of 6,300 mg/L among the three CSTRs. On the other hand, at an OLR of 2.5 kgCOD/(m3.d), R2 (10 g/L PNB) showed the most superior performance with chemical oxygen demand (COD) removal of 55% and volatile fatty acid (VFA) concentration of 3,500 mg/L, while R1 (5 g/L PNB) recorded COD removal of 45% and VFA concentration of 4,400 mg/L. In comparison, fixed biofilm reactor (FBR) with 80 g/L of PNB as support material operated satisfactorily at OLR of 13.8 kgCOD/(m3.d) with 70% COD removal and VFA concentration of 1,400 mg/L. These investigations confirmed the beneficial role of biochar in anaerobic processes by promoting CM-IET amongst VFA degrading bacteria and methane producing archaea.

Funder

Ministry of Education, India

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3