Photo-Fenton-like treatment of K-acid: assessment of treatability, toxicity and oxidation products

Author:

Olmez-Hanci Tugba1,Arslan-Alaton Idil1,Gelegen Ozlem1

Affiliation:

1. Istanbul Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey

Abstract

Photo-Fenton-like treatment of the commercially important naphthalene sulphonate K-acid (2-naphthylamine-3,6,8-trisulphonic acid) was investigated using UV-C, UV-A and visible light irradiation. Changes in toxicity patterns were followed by the Vibrio fischeri bioassay. Rapid and complete degradation of K-acid accompanied with nearly complete oxidation and mineralization rates (>90%) were achieved for all studied irradiation types. On the other hand, detoxification was rather limited and did not change significantly during photo-Fenton-like treatment. Several oxidation products could be identified via liquid chromatograph–mass spectrometer analyses, such as desulphonated and hydroxylated naphthalene derivatives, quinones, and ring-opening as well as dimerization products. Photo-Fenton-like treatment of K-acid with UV-C, UV-A and visible light irradiation occurred through a series of hydroxylation and desulphonation reactions, followed by ring cleavage. A common degradation pathway for photo-Fenton-like treatment of K-acid using different irradiation types was proposed.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3