Evaluation of initial collision-attachment efficiency between carbon dioxide bubbles and algae particles for separation and harvesting

Author:

Kim Mi-Sug1,Kwak Dong-Heui2

Affiliation:

1. Korean Urban Regeneration Technology Institute, 892-5 Inhu-1ga Deokjin-gu, Jeonju 561-231, Republic of Korea

2. Dept of Env. and Chem. Eng., Seonam University, 439 Chunhyang-ro, Namwon 590-711, Republic of Korea

Abstract

Microalgae have been regarded as a pollutant causing algal blooms in lakes or reservoirs but have recently been considered as a useful source of biomass to produce biofuel or feed for livestock. For the algae particle separation process, carbon dioxide (CO2), one of the main greenhouse gases, is dissolved into a body of water rather than being emitted into atmosphere. This study aims at determining the feasibility of CO2 bubbles as an algae particle separation collector in a flotation process and providing useful information for effective algae harvesting by describing optimal operating conditions of dissolved carbon dioxide flotation or dissolved air flotation. The first step is to develop a flotation model for bi-functional activity, algae control and algae harvesting at the same time. A series of model simulations is run to investigate algae particle separation possibilities such as an initial collision-attachment efficiency that depends upon separation characteristics due to an algae life cycle, including: pH, size distribution, zeta potential, cell surface charge, density, electric double layer, alkalinity, and so on. Based on the separation characteristics, conditions required to form flocculation are predicted in order to obtain the optimal flotation efficiency.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3