Sludge reduction via biodegradation of the endogenous residue (XE): experimental verification and modeling

Author:

Fall Cheikh1,Millan-Lagunas Ericka L.1,Lopez-Vazquez Carlos2,Hooijmans Christine Maria2,Comeau Yves3

Affiliation:

1. Universidad Autonoma del Estado de Mexico (UAEM), Apdo postal 367, Toluca C.P. 50091, Mexico

2. UNESCO-IHE, Westvest 7, Delft 2611 AX, The Netherlands

3. Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec, Canada H3C 3A7

Abstract

The feasibility of sludge reduction via the XE biodegradation process was explored both experimentally and through modeling, where the main focus was on determining the value of the bE parameter (first order degradation of XE) from a continuous process. Two activated sludge (AS) systems (30 L) were operated in parallel with synthetic wastewater during 16 months: a conventional activated sludge (CAS) system and a modified low-sludge production activated sludge (LSP-AS) process equipped with a side-stream digester unit (DU). First, the long term data of the CAS reactor (1 year) were used to calibrate the ASM model and to estimate the heterotrophic decay constant of the cultivated sludge (bH = 0.29 d−1, death-regeneration basis). Second, pre-simulations were performed to design the LSP-AS system and to estimate the DU volume required (40 L), to avoid XE accumulation in the process. Third, the LSP-AS process was built, put in operation and monitored for more than 9 months. This allowed assessment of the actual behavior of the quasi-complete solids retention system. Once calibrated, the modified AS model estimated the value of the bE parameter to be in the range of 0.003–0.006 d−1, satisfactorily describing the overall sludge yield reduction of up to 49% observed in the experiments.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3