Oxidative treatment of diclofenac via ferrate(VI) in aqueous media: effect of surfactant additives

Author:

Wang Yingling12,Ni Tianjun12,Yuan Jianmei1,Wang Chunfeng2,Liu Guoguang23

Affiliation:

1. Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China

2. School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China

3. Faculty of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The potential reaction of diclofenac (DCF) with ferrate(VI) and influences of coexisting surfactants have not been investigated in depth, and are the focus of this study. The results demonstrated that DCF reacted effectively and rapidly with Fe(VI) and approximately 75% of DCF (0.03 mM) was removed by excess Fe(VI) (0.45 mM) within 10 min. All of the reactions followed pseudo first-order kinetics with respect to DCF and Fe(VI), where the apparent second-order rate constant (kapp) was 5.07 M−1 s−1 at pH 9.0. Furthermore, the degradation efficiencies of DCF were clearly dependent on the concentrations of dissolved organic matter additives in the substrate solution. Primarily, inhibitory effects were observed with the samples that contained anionic (sodium dodecyl-benzene sulfonate, SDBS) or non-ionic (Tween-80) surfactants, which have been attributed to the side reactions between Fe(VI) and surfactants, which led to a reduction in the available oxidant for DCF destruction. Furthermore, the addition of a cationic surfactant (cetyltrimethyl ammonium bromide, CTAB) and humic acid (HA) conveyed significantly promotional effects on the DCF-Fe(VI) reaction. The rate enhancement effect for CTAB might be due to micellar surface catalysis, through the Coulomb attraction between the reactants and positively charged surfactants, while the catalytic action for HA resulted from the additional oxidation of Fe(V)/Fe(IV) in the presence of HA. The results provided the basic knowledge required to understand the environmental relevance of DCF oxidation via Fe(VI) in the presence of surfactant additives.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degradation of organic chemicals in aqueous system through ferrate-based processes: A review;Journal of Environmental Chemical Engineering;2022-12

2. Lipids produced by filamentous fungi;Biomass, Biofuels, Biochemicals;2022

3. Bio- and chemical surfactants for remediation of emerging organic contaminants;Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum:;2022

4. Combining ferrate(VI) with thiosulfate to oxidize chloramphenicol: Influencing factors and degradation mechanism;Journal of Environmental Chemical Engineering;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3