Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: effect of process parameters

Author:

Mecha Achisa C.12,Onyango Maurice S.1,Ochieng Aoyi3,Momba Maggy N. B.2

Affiliation:

1. Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

2. Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa

3. Centre for Renewable Energy and Water, Vaal University of Technology, Vanderbijlpark, South Africa

Abstract

The study investigates the influence of process parameters on the effectiveness of ozonation in the removal of organic micro-pollutants from wastewater. Primary and secondary municipal wastewater containing phenol was treated. The effect of operating parameters such as initial pH, ozone dosage, and initial contaminant concentration was studied. An increase in contaminant decomposition with pH (3–11) was observed. The contaminant removal efficiencies increased with an increase in ozone dose rate (5.5–36.17 mg L−1 min−1). Furthermore, the ultraviolet absorbance (UV 254 nm) of the wastewater decreased during ozonation indicating the breakdown of complex organic compounds into low molecular weight organics. Along the reaction, the pH of wastewater decreased from 11 to around 8.5 due to the formation of intermediate acidic species. Moreover, the biodegradability of wastewaters, measured as biological and chemical oxygen demand (BOD5/COD), increased from 0.22 to 0.53. High ozone utilization efficiencies of up to 95% were attained thereby increasing the process efficiency; and they were dependent on the ozone dosage and pH of solution. Ozonation of secondary wastewater attained the South African water standards in terms of COD required for wastewater discharge and dissolved organic carbon in drinking water and increased significantly the biodegradability of primary wastewater.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3