Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process

Author:

Pueyo N.1,Miguel N.1,Ovelleiro J. L.1,Ormad M. P.1

Affiliation:

1. Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, C/María de Luna 3, Zaragoza 50018, Spain

Abstract

The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide–ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation–flocculation–decantation and lime–soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5–12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN– of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference32 articles.

1. Cyanide oxidation by ozone in a steady-state flow bubble column;Barriga-Ordonez;Minerals Engineering,2006

2. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater;Burmistrz;Water Science & Technology,2013

3. Heterogeneous catalytic ammoxidation of o-xylene to phthalimide: analysis of the reaction network;Centi;Gazzeta Chimica Italiana,1989

4. Oxidation of cyanide in effluents by Caro's acid;Cesar;Minerals Engineering,2013

5. The chemical and biological characteristics of coke-oven wastewater by ozonation;Chang;Journal of Hazardous Materials,2008

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3