Water transparency distribution under varied currents in the largest river-connected lake of China

Author:

Wang Hua123,Zhao Yijun2,Zhang Zhizhang2,Pang Yong2,Liang Dongfang3

Affiliation:

1. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China

2. College of Environment, Hohai University, Nanjing 210098, China

3. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Abstract

Water transparency is an important ecological indicator for shallow lakes. The largest shallow lake, Poyang Lake, as well as the most typical river-connected lake in China was selected as the research area. In view of the complicated water-sediment conditions induced by its frequent water exchange with external rivers, the dominant factors driving water transparency were determined against the field investigated data from 2003 to 2013 and a specific driving function was established. A numerical model coupling suspended sediment, Chl-a and chemical oxygen demand was developed and validated, and the spatial water transparency distributions under three typical current structures in Poyang Lake, Gravity-style, Jacking-style and Backflow-style, were quantitatively estimated. The following results stood out: water transparency in the lake varied distinctly with the current status; Backflow-style current was basically characterized by the lowest water transparency, while that under Jacking-style was the highest due to the lower sediment carrying capacity. In some outlying regions in the lake, where the water current is hardly influenced by the mainstream, the water transparency was always kept at a stable level.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference38 articles.

1. Absorption by dissolved organic matter of sea (yellow substance) in the UV and visible domains;Bricaud;Limnol & Oceanogr.,1981

2. Using remotely sensed suspended sediment concentration variation to improve management of Poyang Lake, China;Cui;Lake and Reservoir Management,2013

3. Two-dimensional mathematical model for transport of suspended particulate matters in lakes;Ding;Journal of Hydraulic Engineering,2006

4. Application of 2-D sediment model to fluctuating backwater area of Yangtze River;Fan;Water Science and Engineering,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of the Parameters Effecting the Water Quality Evolution of Xuanwu Lake, China;International Journal of Environmental Research and Public Health;2021-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3