Optimizing Cu(II) removal from aqueous solution by magnetic nanoparticles immobilized on activated carbon using Taguchi method

Author:

Ebrahimi Zarandi Mohammad Javad1,Sohrabi Mahmoud Reza1,Khosravi Morteza1,Mansouriieh Nafiseh1,Davallo Mehran1,Khosravan Azita2

Affiliation:

1. Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

2. Department of New Materials, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran

Abstract

This study synthesized magnetic nanoparticles (Fe3O4) immobilized on activated carbon (AC) and used them as an effective adsorbent for Cu(II) removal from aqueous solution. The effect of three parameters, including the concentration of Cu(II), dosage of Fe3O4/AC magnetic nanocomposite and pH on the removal of Cu(II) using Fe3O4/AC nanocomposite were studied. In order to examine and describe the optimum condition for each of the mentioned parameters, Taguchi's optimization method was used in a batch system and L9 orthogonal array was used for the experimental design. The removal percentage (R%) of Cu(II) and uptake capacity (q) were transformed into an accurate signal-to-noise ratio (S/N) for a ‘larger-the-better’ response. Taguchi results, which were analyzed based on choosing the best run by examining the S/N, were statistically tested using analysis of variance; the tests showed that all the parameters’ main effects were significant within a 95% confidence level. The best conditions for removal of Cu(II) were determined at pH of 7, nanocomposite dosage of 0.1 gL−1 and initial Cu(II) concentration of 20 mg L−1 at constant temperature of 25 °C. Generally, the results showed that the simple Taguchi's method is suitable to optimize the Cu(II) removal experiments.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3