Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur

Author:

Moon Jinyoung1,Hwang Yongwoo1,Kim Junbeum2,Kwak Inho1

Affiliation:

1. Department of Environmental Technology and Safety Technology Convergence, Inha University, 253 Younghyun-Dong, Namgu, Incheon, South Korea

2. CREIDD Research Centre on Environmental Studies & Sustainability, Department of Humanities, Environment & Information Technology (HETIC), University of Technology of Troyes, Troyes, France and Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic University, Tomsk, Russia

Abstract

Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3−. Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3− and HCO3−, and actual plating wastewater, which was collected from the effluent water of a plating company called ‘H Metals’. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3−-N/m3·day at a nitrogen loading rate of 0.9 kg NO3−-N/m3·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3−-N/m3·day at a nitrogen loading rate of 1.11 kg NO3−-N/m3·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO42− production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference42 articles.

1. Influence of free nitrous acid on thiosulfate-utilizing autotrophic denitrification;Ahn;Journal of Korean Society on Water Environment,2014

2. Temperature effects in bio-P removal;Baetens;Water Science & Technology,1999

3. A kinetic model for autotrophic denitrification using elemental sulfur;Batchelor;Water Res.,1978

4. Autotrophic denitrification using elemental sulfur;Batchelor;JWPCF,1989

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3