Synthesis and performance of antifouling and self-cleaning polyethersulfone/graphene oxide composite membrane functionalized with photoactive semiconductor catalyst

Author:

Dizge Nadir1,Gonuldas Hakan1,Ozay Yasin1,Ates Hasan1,Ocakoglu Kasim23,Harputlu Ersan2,Yildirimcan Saadet24,Unyayar Ali1

Affiliation:

1. Department of Environmental Engineering, Mersin University, Yenisehir, Mersin 33343, Turkey

2. Advanced Technology, Research and Application Center, Mersin University, Mersin 33343, Turkey

3. Department of Energy Systems Engineering, Faculty of Technology, Mersin University, Mersin 33480, Turkey

4. Faculty of Engineering, Department of Electrical-Electronics Engineering, Toros University, Mersin 33140, Turkey

Abstract

This study was performed to synthesize membranes of polyethersulfone (PES) blended with graphene oxide (GO) and PES blended with GO functionalized with photoactive semiconductor catalyst (TiO2 and ZnO). The antifouling and self-cleaning properties of composite membranes were also investigated. The GO was prepared from natural graphite powder by oxidation method at low temperature. TiO2 and ZnO nanopowders were synthesized by anhydrous sol–gel method. The surface of TiO2 and ZnO nanopowders was modified by a surfactant (myristic acid) to obtain a homogeneously dispersed mixture in a solvent, and then GO was functionalized by loading with these metal oxide nanopowders. The PES membranes blended with GO and functionalized GO into the casting solution were prepared via phase inversion method and tested for their antifouling as well as self-cleaning properties. The composite membranes were synthesized as 14%wt. of PES polymer with three different concentrations (0.5, 1.0, and 2.0%wt.) of GO, GO-TiO2, and GO-ZnO. The functionalization of membranes improved hydrophilicity property of membranes as compared to neat PES membrane. However, the lowest flux was obtained by functionalized membranes with GO-TiO2. The results showed that functionalized membranes demonstrated better self-cleaning property than neat PES membrane. Moreover, the flux recovery rate of functionalized membranes over five cycles was higher than that of neat membrane.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3