A comparison of different pilot constructed clarifiers with the purpose of achieving the optimum condition in turbidity removal at water treatment plants in Tehran

Author:

Mirbagheri Seyed Ahmad1,Malekmohamadi Sima1,Nasrabadi Sheida Sohrabi1

Affiliation:

1. Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Clarifying is one of the most crucial stages in water treatment at water treatment plants. Determining the type of the clarifier in water treatment plants and using it efficiently is necessary. In this study, a pilot is designed and constructed in which the pulsator, the superpulsator and the accelerator are simulated. For each system, turbidity removal efficiency for different influent turbidities and flow rates were studied and the optimum condition was obtained. The results showed that the superpulsator has a superior performance compared to the pulsator, and the pulsator has a superior performance compared to the accelerator and these differences are more sensible at higher flow rates. Also, the best condition for achieving the highest efficiency for the pulsator and the superpulsator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with alum as the coagulant and the highest efficiency for the accelerator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with ferric chloride as the coagulant. Comparing the turbidity removal efficiency shows that for 67% of the cases, ferric chloride has a better performance as the coagulant compared to alum and increasing the influent turbidity leads to an increase in the removal efficiency. Furthermore, three water treatment plants located in Tehran were studied and their characteristics were compared and suggestions were made to enhance their qualities.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference33 articles.

1. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions;Ahmed;Journal of Water Process Engineering,2016

2. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment;Amuda;Journal of Hazardous Materials,2007

3. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants;Ang;Desalination,2015

4. Drinking water insecurity: water quality and access in coastal south-western Bangladesh;Benneyworth;International Journal of Environmental Health Research,2016

5. Evaluation of industrial dyeing wastewater treatment with coagulants;Bidhendi;International Journal of Environmental Research,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3