Investigating nitrogen removal using simultaneous nitrification-denitrification in transferring wastewater through collection networks with small-diameter pipes

Author:

Babanezhad E.1,Amini Rad H.1,Hosseini Karimi S. S.1,Qaderi F.1

Affiliation:

1. Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

This study evaluates the removal of nitrogen compounds from wastewater in modified, small diameter gravity slope (SDGS) pipes during its conveyance. A 13-meter long, closed loop, wastewater collection network was designed and built at laboratory scale. The modified SDGS consists of Polyvinyl Chloride (PVC) tubes with perforated plastic netting fixed to the inner surfaces, to enhance biofilm attachment and growth under gravity flow. The system was operated at constant temperature using synthetic wastewater similar to municipal wastewater. The efficiency of ammoniacal nitrogen (NH3-N) removal at initial chemical oxygen demand (COD) concentrations of 340, 570, and 860 mg/L was studied. The NH3-N batch concentrations tested were 4.58, 6.32, and 9.48 mg/L, respectively. The results showed that nitrogen loss under aerobic conditions may have been due to simultaneous nitrification and denitrification, which began to operate when the biofilm was between 2.5 and 5.5 mm thick. A maximum NH3-N removal efficiency of 75% was achieved following 10 hours' circulation period, at a COD concentration of 570 mg/L.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference31 articles.

1. American Water Works Association and Water Environment Federation;American Public Health Association,1998

2. Mechanism for simultaneous nitrification/denitrification and biological phosphorus removal in orbal oxidation ditches and their full-scale application;Daigger,1999

3. Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system;Ding;Desalination,2011

4. Evaluation of alternative sewers as wastewater pre-treatment facilities;Ebrahimi raviz;Modares Civil Engineering Journal,2016

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3