Flexibility and adaptability: essential elements of the WRRF of the future

Author:

Daigger Glen T.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

All Water Resource Recovery Facilities (WRRFs) must comply with evolving treatment objectives and product water quality requirements, using technologies which also evolve over time. The useful life of the physical structures, especially hydraulic conveyance (pipes and channels) and water holding structures, is significantly longer than that of the specific technologies used. Thus, the WRRF of the future must, first and foremost, be designed with the flexibility to adapt to a wide variety of requirements over its life using a wide variety of technologies, some of which are currently known while others will be invented and/or further developed over time. This might be seen as the true essence of the WRRF of the future, rather than the specific technology implemented at a particular time. While incorporating flexibility and adaptability into facilities may seem daunting, especially since future requirements and technologies are largely unknown, experience indicates that much can be done to prepare for such changes. Proven engineering approaches are presented and discussed in the paper, including the ‘building block approach’ to plant layout and design, and the choice of process tank configurations which can accommodate numerous technologies.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference23 articles.

1. Wastewater management in the 21st century;Daigger;Journal of Environmental Engineering,2007

2. State-of-the-art review: evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, resource recovery;Daigger;Water Environment Research,2009

3. Integrating water and resource management for improved sustainability;Daigger,2010

4. A practitioner's perspective on the uses and future developments for wastewater treatment modelling;Daigger;Water Science and Technology,2011

5. Designing and implementing urban water and resource management systems which recover water, energy, and nutrients;Daigger,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3