Influence of wastewater treatment on sludge production and processing

Author:

Barber W. P. F.

Abstract

The challenge of stricter wastewater standards is resulting in configuration changes to wastewater treatment. As facilities upgrade, the type of sludge produced is changing, with growing quantities of secondary and chemical sludge at the expense of primary sludge. It is already understood that secondary sludge is harder to treat than its primary equivalent; therefore, increasing the quantity of this type of sludge will have detrimental impacts downstream. As legislation tightens further, extended aeration times may be required during processing to remove more nutrients. Work has shown that extended aeration further exacerbates the difficulty of treating secondary sludge. This paper explains how tightening wastewater legislation fundamentally alters the nature of the sludge produced and how this affects further processing, especially with respect to sludge production and type; sludge energy content; performance of anaerobic digestion and dewatering, and potential for thermal energy recovery.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference20 articles.

1. Phosphorus requirement in high-rate anaerobic wastewater treatment;Alphenaar;Water Research,1993

2. ANZBP 2012 Discussion Paper Biosolids, Carbon and Climate Change. AECOM Report for Australia and New Zealand Biosolids Partnership. Australian Water Association (AWA), Sydney.

3. Review of the performance of an advanced digestion process;Asaadi,2008

4. ASCE, 2000ASCE Manuals and Reports on Engineering Practice No. 98 - Conveyance of Residuals from Water and Wastewater Treatment. American Society of Civil Engineers, 04/05/2000, ISBN: 9780784404386.

5. Modelling the influence of municipal sludge anaerobic digestion and co-digestion on downstream unit operations;Barber,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3