Sulfate reducing bacteria applied to domestic wastewater

Author:

van den Brand Tessa1,Snip Laura1,Palmen Luc1,Weij Paul2,Sipma Jan3,van Loosdrecht Mark14

Affiliation:

1. KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, The Netherlands

2. Delfluent Services BV, Peuldreef 4, 2635 BX Den Hoorn, The Netherlands

3. Paques BV, Tjalke de Boerstrjitte 24, 8561 EL Balk, The Netherlands

4. TU Delft, van der Maasweg 9, 2629HZ Delft, The Netherlands

Abstract

Abstract The application of sulfate reducing bacteria (SRB) to treat municipal wastewater is seldom considered. For instance, due to low sludge yield it can reduce the amount of excess sludge produced significantly. Several studies, mainly at laboratory-scale, revealed that SRB can proliferate in artificial wastewater systems at temperatures of 20°C and lower. So far, the application of SRB in a domestic wastewater treatment plant has been limited. Therefore, this study evaluates the proliferation of SRB at pilot-scale in a moderate climate. This study revealed that SRB were present and active in the pilot fed with domestic wastewater at 13°C, and outcompete methanogens. Stable, smooth and well-settled granule formation occurred, which is beneficial for full-scale application. In the Netherlands the sulfate concentration is usually low (<500 mg/L), therefore the application of SRB seems challenging as sulfate is limiting. Additional measurements indicated the presence of other sulfur sources, therefore higher sulfur levels were available, which makes it possible to remove more than 75% of the chemical oxygen demand (excluding sulfide) based on SRB activity. The beneficial application of SRB to domestic wastewater treatment might therefore be valid for more locations than initially expected.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3