Improved formulations for rapid erosion of diverse solids in combined sewers

Author:

McIlhatton T.D.1,Ashley R.M.2,Tait S.J.2

Affiliation:

1. Department of Civil Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3BX

2. Pennine Water Group Department of Civil & Structural Engineering, University of Sheffield, Sheffield

Abstract

For more than a decade, research carried out in Scotland has investigated the movement of sediment in sewers and the associated pollutant release. Pollution by discharges from combined sewer overflows can adversely affect watercourses, particularly those in urban areas. Solids and dissolved contaminants, many derived from in-sewer deposits during a storm event, can be especially significant. This phenomenon can occur during events known as ‘foul flushes’. In combined sewers these typically occur in the initial period of storm flows, when the concentration of suspended sediments and other pollutants is significantly higher than at other times. It has become apparent that much of the suspended load originates from solids eroded from the bed. The ‘near bed solids’ which are re-entrained into the flow, together with solids eroded from the bulk bed, account for large changes in the suspended sediment concentration under time varying flow conditions. This paper describes some of the methods employed to investigate the solids eroding in combined sewers during peak flow events. The work examined the potential for sediment re-suspension under high flow conditions both in the laboratory and in the field.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3