Push-pull test evaluation of the in situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms

Author:

Azizian M.F.1,Istok J.D.1,Semprini L.1

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, 202 Apperson Hall, Oregon State University, Corvallis, OR 97331, USA, (E-mail: jack.istok@oregonstate.edu; lewis.semprini@oregonstate.edu)

Abstract

Single-well, push-pull tests were conducted in a contaminated aquifer to evaluate the ability of toluene-oxidizing microorganisms to cometabolize chlorinated aliphatic hydrocarbons (CAHs), such as trichloroethene (TCE). Test solutions were injected into the aquifer using a standard monitoring well, and then were transported under natural-gradient conditions. Transport tests demonstrated similar transport characteristics of the conservative tracer and the reactive solutes. Biostimulation tests were then performed by injecting a test solution containing dissolved toluene substrate, hydrogen peroxide, bromide, and nitrate in order to increase the biomass of toluene-utilizing microorganisms. Decreases in toluene concentration and the production of o-cresol as an intermediate oxidation product indicated the simulation of toluene-utilizing microorganisms containing an ortho-monooxygenase enzyme. Transformation tests demonstrated that indigenous microorganisms had the capability to transform the surrogate compounds (e.g. isobutene) and both cis-dichloroethene (cis-DCE) and trans-dichloroethene (trans-DCE). Isobutene was transformed to isobutene oxide, indicating transformation by a toluene ortho-monooxygenase, and both cis-DCE and trans-DCE were transformed. In a final test, the utilization of toluene, and the transformation of isobutene, cis-DCE, and trans-DCE were all inhibited in the presence of 1-butyne, a known inhibitor of the toluene ortho-monooxygenase enzyme. The method assessed the activity of attached microorganisms under in situ conditions of bioremediation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3